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ABSTRACT

The prediction of the sound scattered by impedance covered wedges

is obtained by use of dual integral equations. The impedance of each

face of the wedge is modeled as a point reacting complex quantity which

is independent of the other face. The solution was constructed as an

angular spectrum to satisfy the boundary conditions and Sommerfeld

radiation condition. The solution kernel was obtained exactly and is

in terms of circular functions. The solution of the scattered pressure

was then obtained for far-field and mid-range by use of asymptotic

techniques. This solution is much simpler than the one developed by

Russian scientists [for example, see G.D. Maliuzhinets, "The Radiation

of Sound by Vibrating Boundaries of an Arbitrary Wedge," Parts I and 2,

Soviet Physics Acoustics, pp. 152-174 and 240-248 (1955)] which was

obtained by a method similar to Wiener-Hopf technique. Thus, it is

easier to use in highway noise applications because of its simplicity.

The solution for the diffracted pressure exhibits clearly the role

of the incident and reflected shadow boundaries and shows there is one

minimum in the scattered field which depends on the two surface

impedances. For backscattered pressure, the solution exhibits two

minima. In all cases, the scattered pressure becomes negligible near

* the wedge surfaces.
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CHAPTER I

INTRODUCTION

1.1 Background

In recent years, noise reduction by barriers has become a common

measure for environmental protection. Ideally such design should be

based on easily applicable equations which characterize the diffraction

around the barrier. However, the complexity of the available solutions

has necessitated the introduction of variety of approximations and

idealizations, such as ideal boundaries and limited geometric shapes.

This study deals with the diffraction of sound by wedges whose

surfaces are characterized by locally reacting finite acoustic

-impedances and have general wedge angles. The solutions obtained are

much simpler than the ones being used presently. Thus they are easier

4, to use in noise attenuation applications.

1.2 Literature Review

The problem of diffraction by sharp-edged objects has been studied

extensively in acoustics, electromagnetics, optics and water-wave

theory. The following literature review is mainly concentrated on

diffraction by wedges.

The first investigator who succeeded in deriving the first exact

solution of diffraction of a plane wave by a wedge was Sommerfeld (1].

His solution is only applicable to a particular case of two-dimensional

problem of diffraction, namely two types of ideal boundary conditions

where both surfaces are either perfectly soft (pressure release) sur-

ti . . . . - - ° . . . *., . , ' ' .% . ,- . . " ... ' - '-*.*. .. " ' , - o ,' - - , -. - . ,' ' - - . - , , ' . - '
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*faces or perfectly hard (rigid) surfaces. The Sommerfeld theory has

been considered to be very difficult to understand because the solu-

tion is derived by a heuristic image method. Sommerfeld arrived at his

results by seeking an appropriate solution to the wave equation of

period 41j and by combining it with its "image." The solution that

resulted is valid in the far-field, but it becomes unbounded at the

incident and reflected shadow boundaries. MacDonald (21 approached the

wedge diffraction problem using the classical separation of variables

technique and expressed the solution as an infinite series of

appropriate eigenfunctions for point and line sources.

The first solution of diffraction by an imperfectly conducting

obstacle was obtained by Senior 131. The general problem of

diffraction of a plane wave by a non-ideal surface wedge of arbitrary

angle was considered. In order to obtain the solution, Senior made

some assumptions without physical reasoning which hold only for a

pressure release wedge. Williams [41 obtained a solution for

diffraction by impedance covered arbitrary wedge. He reduced the

original problem to the solution of an ordinary difference equation.

This equation was then solved in terms of the double Gamma function

defined by Barnes 151. The resulting solution is an infinite product

-I form and can only be solved in closed form if the wedge angle is Ip/q

where p and q are relative prime integers, with p odd.

Russian physicist Maliuzhinets 161 demonstrated that the kernel

of the problem obtained in the Fourier transform approach is the

solution of a difference equation. He gave conditions and proved

theorems about this fact. However, his method for obtaining the

N . . . ~ tfi%~~ - * * * ' - . . . . . .
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solution of this difference equation was not published in the open

literature. The solution is quite similar to the Weiner-Hopf tech-

nique of factoring a function into the product of two functions each

valid in one half space. Skudrzyk (7] and VanLennep [8] made two

independent attempts and derived the so called Maliuzhinets functions.

Maliuzhinets functions consist of the product of four complicated

functions with four different arguments. These functions are typical

of those found in Weiner-Hopf solution, i.e., they are exponential

functions each of whose argument is a proper integral of another

function. Several applications of these functions to propagation

problems were published by Maliuzhinets [9-11] and other Russian

scientists [12-15]. The closed form solution obtained by using

these functions is limited by the same conditions applied to the

solution of Williams. For a general wedge angle the solution was

approximated by Skudrzyk [7].

In more recent studies Pierce [16] and Kouyoumjian [171 extended

*the available solutions of Williams and Sommerfeld for applications

in electromagnetic waves and acoustic absorbing barriers respectively.

Pierce was interested in the application to more complicated barrier

structures which involve more than one wedge -- thick absorbing

barrier or trapezoid absorbing barrier -- by using the diffraction

coefficient for the absorbing wedge in conjunction with Keller's

Geometric Theory of Diffraction (GTD). In Kouvounjian's original

paper only diffraction by a perfectly conducting wedge whose edge

is a curved line was studied. The diffraction coefficient obtained

by incorporating asymptotic results by Pauli [18) and Oberhettinger

(191 is continuous across the incident and reflection shadow bound-

iN

9"% ' % " ,' , '7 %," ." ' " •""' "/ " " ' -:'5 -" "" "" """"" '
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aries. The expressions for the acoustic wedge diffraction coeffi-

cients contain Fresnel integrals, which ensure that the total field

is continuous at the incident and reflection shadow boundaries.

These diffraction coefficients were modified for non-ideal boundary

conditions by using Maliuzhinets functions. A complete summary of

these solutions were published by Hayek, et al. [20]. Rawlins (21]

proposed a superposition method for perfectly absorbing wedges by

combining the known solutions for hard and soft wedges and derived

a simple closed form solution for an absorbing wedge.

The most widely studied special wedge is the half-plane.

Carslaw [22] extended Sommerfeld's plane wave solution for a half-

plane with ideal (either rigid or soft) boundary conditions for line

and point sources. MacDonald [23] showed that his wedge solution

reduces to Carslaw's half-plane solution. He also derived asymptotic

solutions in terms of Fresnel integrals which are widely used in

modern diffraction analysis. Rawlins [24] obtained a closed form

solution for diffraction by a semi-infinite plane with rigid-soft

surfaces by using a modified Wiener-Hopf method (which is a standard

method for half-plane problems).

The first exact solution of diffraction by a semi-infinite

metallic sheet with finite conductivity was obtained by Senior (251.

He considered this particular case of wedge by means of the Wiener-

Hopf technique. The result is in integral form and cannot be easilv

computed. Clemanow [26] introduced a "dual integral" method for

ideal boundaries. In a more recent study Kendig and Hayek [27]

employed an extension of a dual integral method for a hard-soft
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barrier. Kendig [281 also utilized the sae method to solve for the

diffraction by an impedance covered half-piane. Kendig and Hayek

obtained by Fourier transforms two integral equations, each holding for

a different side of the half-plane. These dual integral equations were

solved and continuous solutions at the incident and reflection shadow

boundaries for the plane wave, line and point sources were derived.

Extensive reviews of diffraction from wedges are given by Bowman,

Senior, Usleghi [291, Pierce (161, Christiansen [301, Skudrzyk [7] and

Hayek, et al. [20].

-,

.°
a.
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-*,



CHAPTER II

DIFFRACTION OF PLANE WAVE BY AN IMPEDANCE COVERED WEDGE

2.1 Statement of the Problem

When an acoustic wave is incident upon a discontinuous body,

having acoustic characteristics different from those of the surrounding

medium, the resulting acoustic field is modified from the incident

wave. The modified wave field is caused by scattering from the con-

tinuous and discontinuous parts of the body. Therefore, in addition to

the initial field, there is scattered field which is propagated outward

away from the discontinuity and interfering with the incident field.

*In this study, solution is sought for the diffraction of an

incident plane, line or point source by a wedge with an arbitrary wedge

angle and covered by surfaces possessing locally reacting impedances.

It should be pointed out that even diffraction from a half-plane, which

is one limiting case of a wedge, is approached by ideal boundary

conditions. These ideal surface conditions are characterized as either

the pressure release or the rigid cases. In this study more realistic

and mathematically more complicated surface conditions are to be

considered. The acoustic impedances of the wedge surfaces are finite,

locally reacting and complex. The real and imaginary parts of the

complex impedance are the acoustic resistance and reactance,

respectively. The acoustic resistance of the surface impedance

represents the acoustic energy that is absorbed by the surface of the

wedge. The acoustic reactance of the surface impedance represents the

inertia and the compliance of the surface coverage.
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One can conceive a surface possessing ocally reacting point

impedance Z on which p'oZv n , with vn being :ne normal velocity and p is

j! the surface pressure holds at each and every point. This impedance is

independent of the angle of incidence of the acoustic wave. The

locally reacting point impedance model works well for materials such as

grass covered ground, porous media, fiberous material such as

fiberglass wool, etc. However, this model ignores the wave effects on

the surface or the effects of refraction in the material of the wedge.

A locally reacting surface can be best visualized as a surface which

consists of isolated simple oscillators. In other words, there is no

coupling with the neighboring points of the surface, which excludes

elastic waves propagating on the surface.

2.2 Basic Approach

The solution of the problem is partially based on the works of

Clemmow [26], Kendig 1281, and Kendig and Hayek [27]. It begins with

writing separately, the equations representing the acoustic field

generated by a plane wave source valid in the two half spaces symmetric

about an infinite wedge. By employing Fourier transform techniques and

taking advantage of the symmetry of the wedge, two integral equations

are obtained. The solution was constructed as an angular spectrum

function which satisfies these two integral equations and the

Sommerfeld radiation condition. Since the acoustic field can be

produced by various kinds of sources, the scattered field due to line

and point sources is also investigated. Th, scattered pressure was

then obtained for far-field and mid-range by use of asymptotic

techniques.

1%
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2.3 Integral Representation

The wedge is defined in terms of cyL.ndrical coordinates

(r, ,z) by the equations 0-S (upper surface) and .--s (lower

surface) and its edge is coincident with the z-axis as shown in

Fig. 2.1.

A scattering problem consists of finding the scattering

pressure p when an incident plane wave pi impinges on the obstacle.

The total field pressure must satisfy three requirements, the

differential equation, the boundary conditions and a continuity

condition. The standard Fourier method is not applicable to a

space with a discontinuity. Fourier integrals converge only in

half-space. To assure the continuity at the intersection of two

half spaces, the continuity of the pressure and the normal velocity

are imposed.

Consider the homogeneous wave equation for pressure

- -- I (2.1)
c2 Dt

2

where c is the sound speed of the acoustic medium

Assuming the pressure to be periodic in time as p(x,t) =

p(x) ei , then Eq. (2.1) reduces to the Helmholtz equation:

r,2p + k p - 0 (2.2)

where k m /c

-- - _. *. % - L .2 . . o . " . .. . . . - . . . . . .-. . . ;5 -. - . . . . . .. . * . = f ..
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Fig. 2.1 Geonietry of the irnpedan,:e covered wedge.

aa~
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Define the Fourier Transform pair

Co

f(x) - f F(y) e-iyXdy (2.3)
-00

cc

F(y) - f f(x) e iyXdx (2.4)

Applying the above transform on x in Eq. (2.2), one obtains:

+ p(k - )p 0 (2.5)
9y2

or

a + ?2p + -0 (2.6)

Dy
2

where Ti k /177

Then the solution of the Helmholtz equation, Eq. (2.2) is

p - A(Y) ±iTny (2.7)

Since the wave equation is of the second order, it has two

independent solutions. One solution has to be discarded because

it represents energy sources at infinity. The diffracted pressure

is directed away from the wedge boundariec, so the solution must

describe outgoing waves. Using plus sign (+) for y < 0, and the

minus (-) sign for y > 0, the requirement of waves propagating

' + 
' k ; = ' *'

.. .
-

.. . . . . . . . . . . . . . . . . . . . . .... . . .. . . .... "" '± i l m' • w a *..• •
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and decaying away from the wedge is satisfied.

Using the inverse transform, Eq. (2.), solution of the wave

equation is obtained as

i 2 -iy -ik Xd
p(x,y) W k A(y) e e dX (2.8)

where X = Y/k, and A(X) is the spectral amplitude function. The

above integral represents the solution of the wave equation when

integrated in the proper convergent space.

Although the convergence properties of the integrand are not

affected by a coordinate transformation, at this point it is

advantageous to introduce polar coordinates.

Let

x - rcoso
(2.9)

y - rsin

and

X - cosa

The exponent in the integrand thus becomes

-ikr(cosO cosa - sine sina) (2.10)

= -ikrcoso-+)

The limits on %(_o to +-) are given by

Cs = COS = cos(¢'r+rii) (2.11

- cosa cosha. - isinra sinh-.c1. 2.I
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where subscripts r and i designate real a-d imaginary parts. Due

to periodicity of cos, the entire A-spaco is mapped into a strip

of IT width which repeats with periodicity r. Certain values for

ar and a must be chosen in order to determine the mapping of the

A-path in the c-space.

r Lo = to for X=w (2.12)

a =T Oti = 
± c for X=-' (2.13)

r

The multiplicity of all possible c-paths is shown in Fig. 2.2.

After the change of variables and the coordinate transformation,

Eq. (2.8) becomes:

+ for v > 0

p(r,O) -f yP(cosc) e ikrcosO(a) da, - for y < 0 (2.14)

where P(cosa) - ! A(cosa).

At this point it should be pointed out that beyond the

interval 0 < Rea < 7 the notation P(cosa) must not be taken to imply

that the function is necessarily either even or having a period 2-.

It does not make much difference which sign is selected for

the exponential; convergence can be obtained for each sign by select-

ing the new limits of integration properly. To assure convergence,

the real part of the exponential must be negative. This means one

must have for y > 0:
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Re[-ikr{cos(O-cr )coshot + isinhai sir (-a r )}]

(2.15)

= krsinh i sin(4-ar) < 0

If ai < 0, then

+ (2n-l)ff < a < 2nff + 4 (2.16)

If ai > 0, then

+ 2n7 < a < 4 + (2n+l)Tr (2.17)

Similarly for y < 0:

If a < 0, then

-4 + (2n-l)r < r-< -4 + 2n, (2.18)

If ai > 0, then

-4 + 2n7 < r < -< + (2n-1)7 (2.19)

It is therefore necessary for the convergence of the integral

that the extremes of any path of integration must lie in the shaded

regions of Figs. 2.3a and 2.3b.

The part of the path along the real axis represents homogeneous

plane waves fanning out to free space, whereas the vertical parts

represent inhomogeneous waves decaying away from the wedge. The

. . . =.• -• -- ° " " " "o-' •. • " • "". " ° . . J
°  

•• 
• °  

"• . ." .. ._ .°

i i i ] I . . ....
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Fig. 2.3b Regions of convergence-for y < 0.
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j

spectrum function P(cos) specifies in te-rns of amplitude and phase

the weight attached to each plane wave of- the spectrum. By this

physical reasoning the above integral could have been written down

heuristically as superposition of plane waves propagating in all

directions multiplied by a weighting function which contains the

amplitude and the phase of each plane wave.

To characterize the scattered wave caused by the wedge, it

must be required that the scattered field does not have a source

at infinity. This condition is described by the "Sommerfeld

radiation condition."

lim {v [r-r + ikp]I - 0 (2.20)

r
r c

Substituting the expression for scattered pressure into the

above expression yields
I

lim { [ P(cosf)(I-cos(:t)) e -itrcos(=+7l-dd-} - 0

r (2.21)

This limit is satisfied if the path of integration is in

the convergence regions of the a-plane, which are shown as the

shaded regions in Figs. 2.3a and 2.3b. So the right choice of

y-paths that fall in the convergence regions will automatically

satisfy the Sommerfeld radiation condition.



18

2.4 Plane Wave Formulation

An incident plane wave in free space can be represented as

follows:

= p0eikrcos(
4 - o) (2.22)

where p0 is the amplitude of the incoming wave and 0o is the angle

the wave normal makes with the positive x-axis, see Fig. 2.1.

The surface impedance is the ratio of the total pressure to

the normal component of the velocity. Then the boundary conditions

that have to be satisfied are

Pt pi+p ±

7 V +v Z (2.23)i. tn inn

' where Pt is the total pressure and v tn is the normal component of

the total field particle velocity.

The reflection coefficient for a plane wave incident at a

plane surface with impedance Z is given by

cosu - c/Z2.24)
cosu + Zc/Z

where u is the angle of incidence with the normal to the surface.

There will be no reflection if the numerator is zero, that is the

angle of incidence is equal to the grazing acoustic Brewster angle

given by
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sine+ . (2.25)z+

and

sine- - PC (2.26)

z 
I

Then the boundary conditions, Eq. (2.23), can be written as

ikp+ r(, (2.27)

and

1 ap total
ikptotasine- -( r -(2.28)i tl 30

or in more familiar form

- + Ptotal

- + ikrsine-Ptotal 0 0. ts (2.29)

Using the expressions found in Eqs. (2.22) and (2.14) for

the incident and the scattered pressure the boundary conditions

Eqs. (2.29) for S = and = -S, respectivel. become

",.P(cos:L [sini + + sin(3-:)e-ikrcos(B-t)d

0
(2.30

-sin(S_¢o))e 
k as ( - o
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f P(cosc)[sin- + sin(O+a)]eikrcc d

- -P (sin5- - sin(3+ ) akrcos(3+:o) (2.31)
00

For reasons which will be explained in the next section it is

I beneficial to modify the boundary conditions into a different form.

First consider the left hand side of the boundary condition for

= 8, Eq. (2.30), on two different y-paths, Y1 and Y29 shown on

Fig. 2.4.

I r P+i-p(cosO) (sine+ + sin(.-a) ]e- ik r cos (B- d

- +13+1 + ikrcos d
P(8-a-r) (sine -sinale (2.32)

-2 r+8_ i=

and

P(cosa)(sin + + sin(0-:)]e- ikrcs(-dt

I- P(a--) [in-: - sina]elkrcos dL (2.33)

where a new variable :' - .--:,-- is introduced in both of the above

integrals, -' is replaced by t and the limits of intevration are

changed corresponding1y. Adding the expressions in Eqs. (2.32)

and (2.33), a new path 7 is established as :;hown in Fig. 2.5, so

that Eq. (2.30) reduces to

-. ; *.J,4o fl' ....... ".. "'.,*".$**..-**.*..*.. .- ...".'. *.* .. S~. 7.



21
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f P(O-a-r)[sin&+ - sin ]e krcosada

r

+ ikrcos($-( )
-2p (sine - sin(U3_))e o . (2.34)

0 0

The new path r is thus the addition of two Y paths.

Similarly, if the above procedure is performed on the second

boundary condition, Eq. (2.31), integrated on the path shown in

Fig. 2.6, with a change of variable ' - 8+T-r, the resulting equation

is

frP( a)[sine - sina]e ikrcostida

- (sin- - siikrcos( +o) (2.35)

In addition to the above integral equations there are two more

conditions that are to be satisfied, namely continuity of pressure

and velocity at y - 0 between the two regions y > 0. The two regions

are joined together at - 00. Then the continuity of pressure at

- 0, using Eqs. (2.14) and (2.22) is as follows:

JylP(cos )e-ikrcosada + pe ikrcos0o

. P(cos )e- ikrcosAdt + Pe ikrcoso (2.36)

where the paths Yl and y2 may be taken as one of the many possible

y-paths.

................................................................4*.
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The transverse component of the velocity for the incident wave is

given by

vi = i a sin( -) eikrcos( - o) (2.37)"kic = ' pi M Po - PC

and the velocity for the diffracted pressure is given by

v i a p(ro) - f P(cosa)sin( i)e-krcos da (2.38)
kpcr 6- Pc Y

Then the condition for the continuity of velocity at 0-0
° becomes

f4 P(cosa)sinee-ikrcsad =- 42 P(cosa)sinae-ikrcsa da (2.39)
TI

The paths of integration for Eqs. (2.36) and (2.39) are given in

Fig. 2.7.

2.5 Solution for Plane Wave Incidence

To solve the problem one must attempt to construct a spectrum

function P(cosa), that will satisfy the boundary conditions and the

continuity requirements.

The construction of the function can be made by closing the r-path

in Eqs. (2.35) and (2.36) within a region of convergence and invoking

the Cauchy integral iormula. If one succeeds in closing the path r,

then the encircled poles would have residues that satisfy the right

hand side of the boundary conditions.

,.- .- < ...-.;.. .-. .. - *.'"- , ,u ,,- ,, -
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Fig. 2.8 shows how a F-path may be closed. The integrals,

Eqs. (2.35) and (2.36), around a closed F-path must have the sum

of their residues equal to the right-hand side of these equations.

For example, consider the first boundary condition Eq. (2.35)

+ ikrcos cco
r U1 f2JP(M-c-rr) (sine +- sincc)e- irsodc

-2p (sine+ - sin(O-0 ))e ikrcos( o) (2.40)

The paths U1 plus U2 are called loop integral in Maliuzhinets'

theorem I (Appendix A). A loop integral is zero

f S(z)eikrcoszdz = 0 (2.41)
UI+U2

if the function S(z) is even, i.e., if S(z) = S(-z). Thus one has

to impose a condition of evenness on the function P(Sprt-7,) on path

r, to make the loop integral contribution zero. This condition is

imposed on the integrand to guarantee that the two integrals on U1

and U2 cancel out, so that the main contributions to the integral

come from the poles which are encircled by the closed path.

The exponential parts of the integrand suggest that there are

simple poles located at -(3- 0) = 2n7 and the residues of these

simple poles account for the right-hand side of the Eq. (2.35) which

is

...+ ikrcos(i-;o )-2p 0.(s.in - sinC=- . . . .. .e 0
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IU

Fig. 2.8 Closure of path for boundary conditions.
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C

The major characteristics for a function that will satisfy

" oEq. (2.35) are:

1) P(a-t-ir)(sine - sina) is even in a,

+
2) P(B-a-i)(sin6+ - sina) has simple poles at ±(B- )±2n7

0

with corresponding residues

Po (sinG 0Po-( i 6+ -sin(O- o))e ik rcOs ( a-  ) i

Likewise, the integral Eq. (2.36)

I rU +UIrU ]P(-B+a+Tr)[sin6- - sinc]eikrcosLd

= -2po(sine- - sinG3+¢ ))eikrcos(8+o) (2.42)

suggests the following requirements.

1) P(-5+:a+")(sinC- - sina) is even in a,

2) P(-3+x+-)(sin3- - sina) has simple poles at t(B+o)±2n-

and corresponding residues

-- - -- ikrcos (.+ o )
-P (sine- - sin(Q+to))e o

To acco'odate all of the above requirements the spectrum

function is considered as the sum of two parts. One part has poles

whose residues satisfy the first boundar." condition, the other

part has poles whose residues satisfy the second boundary condition.

Two such functions that have the proper singularities and provide the

proper residues are chosen as

%7.. . .. . . . . .. " ,



30

P 0 COS 0/23 sine+ sin(B-a)

- sina2 i+-)-si sin6O + 2sin(- -)sin(6 ) (2.43)

and

p0  cos 0/23 sine- - sin(a+ct)

0i sin--C--ir-- 6+3,9-t a3+ (2.44)
S i Wo sine- + 2sn )sn("'

If one takes the first of the above functions and encloses the

simple pole at a=i-6o9 the resulting residue is

0 (sin 9+ - sin(-0 o))eikrcos($-So)

Similarly, the residues at ct8+ ° is given by

- (sine- - sin(+3 0))eikrcos(O+o)
271

The two functions happen to be what is required to satisfy the

boundary conditions. The condition of evenness can be easily

verified by substituting 3-a-7 and -8+-+-d. in Eqs. (2.40) and

(2.42) respectively.

One further heuristic requirement is that for an absorbent

wedge, solution of the far-field pressure must cancul out identically

at both boundaries due to the absorption of the enerzy by the wadge

surfaces. By introducing two new functions that multiply Eqs. (2.43)

Ae - .;.:* .A I 4J. ~ Z Z
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and (2.44), the final form of P(cosct) is obtained.

P (COSCO= M 1(CO )1(00~ - M 2 (ax) 2 (a) (2.45)

where M 1(ai) and M 2(00 are the Maliuzhinets angle factors.

cosIT(a) 121 (2.46)
'2 2B3 o

cost) /2B3
) 2(.7T (2.47)

1n , and (a)' are defined by

p [~sin-. - s in (B-) I
~,1 (a 461 + +-r 6-

{sine- + 4tan( )tan(--2-)

020-3--t 3c--

22-.t-- -1- +-

0 4

* sin 2 /L-.i ta( )tan( 0 )-sin(=---)cos(- )sinf( OWi (2.48)

2 44.
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P0  [sine -- sin(a-cO

2 (  " 4i [sine -+2sin()sin(a20)]

(sine +4tan ' 2 4 0-Tr-)tan ( 4 " )

'.4~~ 4________

i8 2B 14--'- 0-Tr - -40-rB a3~
(sin( " ) t a n ( 4-- -) tan( +si (r sn jCos (-= o

{sin0 +4tan( -)tan(

428+a+ -.r -c+4_+ ... -

2 ~LO0 -7T _a+0 0 7 at3~[sin(-) tan( 4 )tan( 4" )-s in ( -2)cos(-4---)sin(----)I} (2.49)

When one of the surfaces is rigid, a special form of P(cos,)AI
is needed since there is no absorption at that boundary. For these

special cases, the functions (a) and 2(a) can be modified as

follows when 4- - 0*

S) ! Po [sin+-sin(O-a)]

Ssn(s(n) +tsnn+2sn( s-' "-(

As tan( )Cosa}

;'_ .:,"-- a-: + 23 -i- :. +

{sin(' 2)-4tan( 4' )tan(-4 )sin( 4 )cos(--.4)} (2.50a)
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p -Cos ( 2
sin% 2~Q

2O+c+ - -~440-T

{sin8 +4tan( -4 )tan( 4

2$+ca+ -T -ct+ +w +o

[sin(-t--)tan( 4 )tan(- 4 )-sin(--t--)Cos(-- )sin(--T-2 )]} (2.51a)

andwhen e+ 00

t(c)=Po -cos(B 2 -)

1 6 sin(B 2

(sin6 +4tan( 4SaA- )tnc-07

4 4

4 4

...................................................r OE +. B-.3-
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Po [sin6--sin(Q+a) /

''2) = [sine-+2sin(---)sin( 2_ )

26+a+- r -a+7o+1

{sin( 2 )+2tan( 4 )COSO/

2S+a+q) o- Z+ +T 2B-I-+@ o  a+0

si 02 4tn)tan( -++sin( 4 Cos--) (2.51b)
{4 sin ( _44ta

It is necessary to show that the function P(cosa), when substi-

tuted in Eqs. (2.36) and (2.39), represents continuous pressure and

velocity fields. Eq. (2.36) clearly implies that the pressure is

continuous at = 0. Continuity of velocity requires further attention.

T. Consider two paths of integration in the domain -n < a < ,T, where there

are two possible poles: 2B o - Tr and -T + o A small absorption

should be added to avoid wave generation at infinity, so that the

simple poles become 23 - - 7 - in and -T + o + inq (Fig. 2.9).
00

Then there are no poles left in the convergent regions and hence the

residues are zero. Therefore, the continuity of the velocity is

identically satisfied.

2.6 Far-field Solution for a Plane Wave Incident

Frequently in wave propagation problems the field pressure at

large distances from the source is desired. Consider the integral

in Eq. (2.14) with the upper sign for the case when 0 < <

p = P(cosa) e ikrcos()di (2.52)

i . . . - .. ". : . , . .+ ; : ?
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Fig. 2.9 Closure of path for satisfying continuity: of
velocity.
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If the non-dimensional distance kr can be taken large enough

then it is possible to get an asymptotic value of the integral by

the steepest descent method. The method is one of finding the saddle

point (or extremum point) and integrating along the exponentially

decaying steepest descent path which passes through the saddle point.

The path of integration should be chosen such that Re(-ikrcos(O-a))

has a maximum value at some point. Therefore the function has an

extremum if

(-ikrcos( -ot)) = 0 (2.53)

Then the saddle points are located at

= ot - 2nT (2.54)

and the corresponding steepest descent paths are defined by:

Im(-ikrcos0-cA)) = -kr - const (2.55)

or

cos(:-.L r)coshL = 1 (2.56)

The above expression is the equation of the steepest descent

path which passes through points -Ar = " :2n-. It is helpful to

know the slope at the saddle points and asymptotes as _ The

.6
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slope and the asymptotes are determined from Eq. (2.56) as follows:

ac.

=± cosha. ±1 at . 0 (2.57)
r

and

cos 0-) = 0 as a ± (2.58)

or

a= ± (2n-l) . (2.59)

For the observer angles 0 < < 5, the steepest descent path

is sketched in Fig. 2.10 by the use of Eqs. (2.54), (2.57) and (2.59).

After completely defining the saddle point and the steepest

descent path, an approximation of the integral in Eq. (2.52) is

written as [311,

f P(cosa.e iro040d
SDP

- e e- ik r P(cos:) (2.60)kr

It should be noted that the solution in Eq. (2.60) is valid

for large values of kr and an observer angle : not close to the

incident and reflection shadow boundaries where the function P(cost)

becomes unbounded.

..*. -.- + +... . -....-*..v.**+..-. + .4., .+
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2.7 Geometric Acoustics

The acoustic scattering by a wedge can be presented in two parts,Ia diffracted part and a geometric part. The steepest descent path

contributes the diffracted part which is given in Eq. (2.60) for

large kr. While the pole that is surrounded by the closed path

contributes the geometric part.

Consider the case where the receiver angle 0 is in the region

20 - o - 7r < < 0. The path can be closed by the y-path and the

steepest descent path so that the pole is surrounded as shown in

Fig. (2.11). Then the solution in this region becomes:

PO ikrcos(O- O )

p(r, ) = - C r e 0 + Pd(r, (2.61)

where Pd when kr is large is given by Eq. (2.60) and Cr is the

reflection coefficient defined as:

sin(- o)-sine+
C = (2.62)

r sin( -o)+Sinv

If the receiver is placed at 0 > > 22 - - (see Fig.

2.12) the solution is given by:

~Po ikrcos (-0 o

p(r,;) = - - Cr e 0 + Pd(r,:) (2.63)

q ." 2 . .. . - .,*.= - 'i'lni '.. .d, - .h .. ..
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Fig. 2.11 Path of integration for the far-field with
0~- . - < t <5, 22-
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Fig. 2.12 Path of integration for the far-field
with 0 > > 22 - -0
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The change in sign between Eqs. (2.61) and (2.63) represents the

sudden transition across the reflection shadow boundary. Thus, the

total field in the different regions shown in Fig. 2.13 can be written

as:

P t - dP+rRegion (I)

- P+ P Region (II)

PdRegion (111) (2.64)



43

.

I REGION Ir I

4 2/3-0-t
-;!"

REGION M REGION U
I..,

I.S.B.
y..

Fi[g. 2.13 RegiTons of valit .y of t.he solution (Eq. 2.64).

L.. ....



- W" a. ,i°- 7 *- -. : . .

CHAPTER III

SOLUTIONS VALID FOR MID-RANGE AND AT SHADOW BOUNDARIES

3.1 Mid-range Solution for a Plane Wave Source

In the asymptotic solution for the far-field there are

discontinuities near the shadow boundaries, because the coefficients

H(a) and M2(0) are singular at these angles. These regions are

referred to as transition regions. To have a continuous total field,

one has to derive a more exact solution which is bounded across these

transicion regions. A method was first proposed by Pauli (181 to

achieve this task.

First, the spectrum function P(cosa) in Eq. (2.45) can be

iA manipulated to have the following convenient form.

P(cosa) - MI(a),l(a) 2 ()V 2 (ci)

- * [[cot . (w + (a-9o)) + tan 1- (+( 0 °))Jqj(a)

+ [cot 1-- (a-(ca-0o)) + tan 0 (-(c+9o))i2(a)1 (3.1)

7. The integral for the pressure can now be treated as four separate

integrals, each of which contains one simple pole. The first of these

can be written as

II r .,()COt 'i (+( o))e-ikrcos(a) d (3.2), .~ ~ P r" y W (.2

By replacing a by ;-a and changing the limits of integrarion

correspondingly (Fig. 3.1) the dependence of the exponential on the

observer angle can be removed.

".'

N*lm&
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Fig. 3.1 Regions of convergence of the Y I-path.
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I ~ ~ ~ w+(+-u-+ o) -kcs

P 2 fl( )cot 2n ) e ikrcosda (3.3)

where
20n (3.4)

The singularity of the integrand can be separated by extracting

the singularity explicitly, i.e., nultiplying and dividing the

integrand by a factor

cosa + cos(2n*N + (0-00)) (3.5)

Then Eq. (3.3) becomes
l r+(4-'i-qo)

PW I P f,+l(a-0o)C~t(- 2n

cosa + cos(2nwN-+(O-a- 0o)) e-_ikrcosa da ( 3.6)

cosa + cos(2nvN-+(O-a-90 ))

where N- is an integer which nearly satisfies the equation

2nwN- - (0-a-00 ) - i •.(3.7)

This condition ensures that only one pole is generated and the

other poles of the periodic functions of Eq. (3.5) are excluded.

In the method of steepest descent for the far-field approximation

mentioned in the previous chapter, the saddle point is taken as the

main contributor. The solution valid in the mid-range and at the

shadow boundaries consists of evaluating the integral along the entire

length of the steepest descent path.

-4 . .. -. --- . - -' , , ' . . . . -,j . , . ,
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Letting the conformal transformation

x 2  ikr(cosa-1); x V2kr e -  sin ._ (3.8)2

so that

d /T- e~' /Cos
dx kr 2 (3.9)

. and substituting Eqs. (3.8) and (3.9) into (3.6) with limits - to-,

it follows that:

P1 kkr i/4 eikr
P2 M J€  -e e 1( -u)cot( 2n

cosa+cos(2nwN-+(O-a- o)) e-X 2

x2+ikr(cos (2nN-+( _-c 0 ))) cosa/2 dx (3.10)

By expanding the integrand in a Taylor series about the

transformed saddle point a = 0 and retaining only the leading term, Eq.

(3.10) reduces to

k in4-k 
-X

2

PI 2 e e-ikr l(,)a(-po) r dx (3.11)

x2+ikra-(-9o)

where
' ' 2nN+ ( -9o)

a;-9 0 ) - 2cos 2 ( -) (3.12)
2

The real integrand in Eq. (3.11) can be expressed in terms of the

complex Fresnel integrals [261.

-T

r e
b dT 2/ F(b) (3.13)

T 2 + ib 2

'U'
~~~~~~~~~~. . . . . . . ................... '. "'....-'.-..... . -.. .. .'....'....'...._,__
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where

i(b) e eib 2  e-iT2dT (3.14)

b

Another form of Fresnel function is given by:

Ieib 2  b _
Fo(b) e J e dT. (3.15)

0

Since
4a .2 do e T2 -e -11/4

f e- i 2 dT 2 f e dT -/w e , (3.16)
•-m 0

and

F(b) + Fo(b) -w e- " i  (3.17)

then

F(b) - lr e- w/4 eib 2 - Fo(b). (3.18)

F(b) can be expressed in terms of C(b) and S(b)

i ib2  i/
F(b) /N e e- /

2

(1 - r et1/ 4(C(b)-iS(b))J (3.19)

where b

C(b) / T f cosT2 dT, (3.20)
0

and

S(b) " sinTz2dT. (3.21)

Using Eqs. (3.19), (3.20) and (3.21), Eq. (3.11) can be rewritten

as

.......................... ..,.-.,....,.............................-.'..._
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I *1 ( cot +( - O)2n eikr eikra(-)

r2
,:'" !a-#-,o)(I - /I eI 1  (C(ka(-o)- is(!ka(-o)

+ ' •,(3.22)

Similarly, expressions can be written for the remaining three

terms of Eq. (3.1). Then the total diffraction field which behaves

smoothly in the transition regions is given by

i r -ikr

' +( *-4*o)
{4I(0) cot( ' )Fl(0-0o)

2n

+ tan( ) F1 (,"o-2 0)]
2n +

+ *2(0) [c~t( (9 ))F ( -9o)
2n

"-(O+o) F( 2

+ tan( "2n )F1 o+0 +2S) (3.23)

where

F( I eikra+ 7)

0 - r2 eI / 4 (C(!kraZ(x))-iS(kra'(x))) (3.24)

and

a(x) = 2cos 2 (2n2N--x) (3.25)

in which N± are the integers which most nearly satisfy the following

conditions [171:
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2nwrN+-x - w (3.26a)

2nwN--x - -w (3.26b)

3.2 Mid-range Solution for a Line Source

The diffraction field generated by a line source can be written by

integrating the plane wave spectrum over two dimensional space, i.e.,

p(r,*) f . P(ao)e-ikrcos(O-a) e-ikroc°S(oo-)dada (3.27)

Using the transformation 0 - a to a and 0o - a to o and changing

the limits correspondingly, one obtains:

p(r,O) e e. f f P(O-U,,o-O)e-ikrcosa e-ikrocosdcdda (3.28)
#'2 1 r Y2

Consider the second term of the modified form of P(cosa) from Eq.

(3.1)

1 it
P2 (aa) t tan 1 (w -i)),l(a.a) (3.29)

where 0o is replaced by a and n denotes 20/w.

Substituting Eq. (3.29) into Eq. (3.28) leads to

-jir/4 +-+ -i -krcosa -ikrosdd

-e___, r f i2 j(-a,-a)tan( 2n ) e e rocosadddd

(3.30)

Then cultiplying both the numerator and the denominator by the

factor

I a I I , Falkcos~o~a2I i4+) cos ( ( + o-=+o+2n, +)
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Eq. (3.30) becomese-i1!/4 _____ _ -__ _,__o- ___

P2= 4/2-7r f'r f2 {  +"o--h a

[cos( 2 )-sin2]

+ * 1(0-a,4-) } eeikrcosa eikrocosadaa (3.31)T+ipo-u-h

[cos( 2 -)+singJ

where

h - 20 + 2nwN+  (3.32)

and
Tr'-a+ )-

9+0 -a--h

cos( 2 - ) (3.33)

In the first term of the Eq. (3.31) changing a by -a, then

e-iw/4 (1O ,0o-0)

4 -2-w 1 2 cos(O " + - ) S 2

P2~~ ~ ',t"2tS2

+ 4 1(0-a- 0 -a) -ikrcosa -ikrocosodada+ . .. .. } e e ad (3.34)9+0o-a-h

[cos( 2 )+sinl

............................................2~.*.
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, -iwi/4

2 /2-w 1 Y2

(OtoO)L [Cos ( 2 h)+Sin ] +,(_,oO).cos+ -. sin) /

Icsco~4 (o-h CF ain + 2(4+00-h~jjlikrcosa ircs
[c sctc sa4i 2  )sini i2  2cos 2 , e kcsdadax

(3.35)

After introducing new variables,

sie " 1_ eiw/4& (3.36)

s 2 . I iw/4 n
sin- e /4 (3.37)

and expanding the numerator of Eq. (3.35) around the saddle point a - 0

leads to

2e-iw/4 *+0o-h
r2 /-1)-oC 2

• - -ikrC 2  -ikron 2 dnd(

i I __ -* - ~ ~ - (3.38)
-0 -0, 00-h -+0o-h

[ &2+T2+2sin(- 2 -)n&+2icos2( 2 )

in which only the leading term of the Taylor series is retained.

Furthermore changing and n to p and Y through

& /: P cosy (3.39)
r

and

n - R psiny (3.40)
r

where

| m J
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R= ro + r (3.41)

yields

12e iWI/4 - ik(r+r0) *+oocoz Oo-h

f* pK(P) e~ k p2dp (3.42)
0

with

2wr dy

K(p)- f +-

P2 [vlr/r~cos2y44--r7r-sir12y+sin( - )sin2YJ+2iV/r0/R cos
2(---)I

(3.43)

K(p) can be integrated by putting

z = e 1Y (3.44)

so that

z dz
K(p) - -41f AZ B2+C(3.45)

UNIT A 4 +Zz
CIRCLE

where

92 04,00-h

A Di5 2sin( 2 p(3.46)

ro r **. . ---.--
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I..
= 2 0+9°-h

B P ~ 2 + 4 F+90c -h (3.47)R R 2

and
0 Cmp[ / _ + 2sin(-.)i. (3.48)

ro  r

It can be easily confirmed that only two of the four poles of Eq.

(3.45) are inside the unit circle. By Cauchy integral theorem K(p) is

evaluated as [261

I "+ - h  /p+2p _4r O2 -+ O-h

K(p) - 2s/ p+2Ip2-s(c( O h) (3.49)

Substituting Eq. (3.49) into the integral in Eq. (3.43) yields

pK() e-kRIP2 dp - 2n sec( 0-

0

-ikRlP 2

f dp (3.50)

0 /cp2+iRIlS))cp2+i/RI+S))

with

S - Vr * ro - 2rrocos(490 -h)

- (r+r°) 2 - 4rrocOs 2 ( 9.2 --) (3.51)

Again introducing a new variable

iA2 - ik(RI-S) + kR102 (3.52)

+. +,+,W ;,.,¢+ , '.;-,:,, .+ ++. . .. .. ; +" .:....+ + r .,',, +



Then the integral in Eq. (3.50) becomes

i/l -iX2 eik(RI-S)
i) /kR1 e e

___-s) " + 21 )
Sek(R

R -) kR_ kR 2

f e dX (3.53)

________) .'A + 2Sk

A Fresnel approximation of Eq. (3.53) can be obtained when kRI >> I

by replacing the non-exponential part of the integrand by its value at

the lower limit, to give the approximation

e ik(Ri-S) f e -i 2 dX - I F(V-i(- lS))  (3.54)

Vk(RI+S) Vk(RI-S) k(RI+S)

where F(b) is given in Eq. (3.19).

Finally, the integration of Eq. (3.30) is reached

P2  4 ee-in/4 e-ikRj'('-) 1 F(/k(R1-S))
2 /k( R1+S)

2 Ik(Ri+S )

(3.55)

with

h = 2$ + 2nTN+

and

S ro)Z -4rrocosz( - )

. . . : . . . . * .... * .
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Similar expressions can be found for the other three terms of the

Eq. (3.27). Then the total solution for a line source when k(r+r o ) >>

is

+(O--o) 2 7+(o ) 2
p - '{*p(OOo)Icot( 2n + tan( 2n )F+ (0"0-201

_--0o) F2 -(p+ o) 2
+ ' 2 (, '

0
O) [ cot( 2n )F;(0-00) + tan( 2n )F ( " 0+20)J)

(3.56)

where -ikS+(x)
.2(x)

Vk(RI+S:(x)

(I - 2 e in/4(C(Vk(RI+S (x)) - iS(/k(Rj+S*(x)) )

(3.57)

S+' /(r+ro,)2 2rroat(x) (3.58)

and

at(x) - 2cos2 (2niN -x) (3.59)2

Mt is given in Eqs. (3.26a) and (3.26b).

3.3 Mid-range Solution for a Point Source

The diffracted pressure for a point source can be written in the

form

e P(cosa) eckR(a)d (3. o)
kR(,)

where

R(a) -Vr4 + r + 2rro cos(, -.) + (z-zo)' (3.61)
0

4%
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and P(cosa) is defined in Eq. (2.45).

The function is not single valued, so the branch cuts are located

at

R(ca) = 0 (3.62)

r2 + r2 + (Z-zo)
2

0 0
O = -- cos(O-a)2rr o

- - cos(¢-ar)coshai (3.63)

Since (r-ro)2 = r2 + r2 - 2rro > 0, then r2 + r2 > 2rr o  which0 0
implies that

r2 + r2 + (Z-Zo)2
0  ) . (3.64)2rro

As a result, the branch points are located by

cos(O-ar) 1 (3.65)

and

r2+r2+(Z-zo 2

coshai 0 2rro (3.66)

or

ar - (2n-)7+ (3.67)

and
r2+r2+(z-zo )2

ui  cosh-l( 0 °rr°  ) . (3.68)

The regions of convergence of the integral in Eq. (3.60) are

determined by the real part of the exponential power,

0 ".'e . '' . " " -. ' - . ' ." . -"" - '.,. - ' " " ""' : , ' .- ,. g ,& 
"

. . . . . . . .
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Re(-ikR(a)) < 0 (3.69)
or

Im(R(a)) < 0 (3.70)

The function R(a) can be written in polar form as

1/2 i ~ 1/2R(c) - IRI e1/  - IRI (cos* + isinp) (3.71)

From Eq. (3.70) the condition of convergence reduces to sin* < 0.

Then the regions of convergence are governed by:

I + < or < € when aI < 0, (3.72)
and

S+ > ar > € when ai > 0. (3.73)

From Eqs. (3.67), (3.68), (3.72) and (3.73) the branch cuts and

regions of convergence are illustrated in Fig. 3.2.

To obtain the solution to the integral in Eq. (3.60), a procedure

is employed similar to the plane-wave and line source incidences. The

solution is divided into subintegrals and poles are extracted

explicitly. First of these subintegrals (using Eq. (3.1)) is

1 r +(a- ;o) e-tR(a)

Pl " 2 , l(CW ) cot( 2n ) k R() da. (3.74)

One can avoid the singularity again by cultiplying and dividing the

integrand by a factor

2nN - (a-,o)
cos( 2 (3.75)

Consider closing the y-path along ; + i- to -i-. Then p, is

given by
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BRANCH CUTS

I I
I I

I

,-7r+4+ib I Vr+IS+it

..,. II
I

ir+4+i

, , 0 !0 7rTr 7r+' J6 7rj
IBRANCH

PI

Fig. 3.2 Regions of convergence and branch cuts for a
point source.
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P 2 - .. 4~ ((1 i 2nwN - (p+iuij- 9 0 )

Cos( 2

e-ik/r2+r +2rrocoshj+( z-z )2

edczj (3.76)
k. r+r+2rcoshi+(z=z)

0

where
iT+iij00  2niTN -(O+iaj-0 0 )

* W(*iaj) - I*~ia)cot(" 2n ) Cos( 2 (.7

Using the fact that pl(a) - pl(-ci)

P1 - f [i(O+i)+t I (O-ic~j)i

2nirN a~0  ~ i -ik/r2+r0+2rrocoshaij+(Z-ZO)2
Cos( 2 )cosh -2e )dctj

[coshaj+cos (2nirN -(p-- 0)) j .r+r4+2rrocoshui+(z-z 0O)z
0

(3.78)

An asymptotic expression for the integral in Eq. (3.77) can be

obtained by letting

2 Irro i/ 39
T = - eRi~ sinhui/2 (.9

where R1 - V'(7rr + zz'

Then

R(ci) - /(r+ro) , + (z-z 0 )z (1+ rsihu/

- RI /1-iV-
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Rewriting Eq. (3.78) with new variabl.,;

/r-r o ei1 [ (O+iaj)+ l(4-iai)] 2n=N--( - o)

Pi k e f cos( 2

e-ikRI'-IiT

4rro 2nwN-(O-_o) dT (3.81)
"4 T2+i _ o2 ..

2 2

Expanding [4i( +ici)+fp(-iaj)J/VTit' in a Taylor series about ai

- 0 and retaining the leading term, Eq. (3.81) becomes:

4rr 2n-( -%o

rr-2 0-e -i(/4 * (0) cos( 2

pe --- i eR I 2 1-

f 4rr_ 24rr d (3.82)

t 2 +i_._ cos 2 ( 2nRI 2 2n )

In order to integrate the integral in Eq. (3.82) consider the case

kR1 > 1, then S- = 1-i' 2/2 and

2 ()-in/4 -ikR 1  2rr °Pl*" ki- .I "--R-- a-(x

e - k R l T2 / 2

-d-r (3.83)
- T2 + 'r / -(

Rl

with x- -o
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where

a-(x) 2cos 2(--n--N --) (3.84)

which has a similar form to Eq. (3.11).

Defining Fresnel integral of the form
-tT

2

bf dr - 2VT F(bVr') (3.85)
- T2+ib2

and using Eqs. (3.13) through (3.15) the final form is obtained:

PI i 2 _(4b)cot( 2n ) e-ikR l eIkrro/R1 a-(x)

f kR1

/a~ =( - r2 e' 1 (/(rro/ Rj)a~x) SI~Rax)

(3.86)

There are similar expressions for the other three terms; then the

total solution becomes:

P - 127 e-tkRl b 1(M)
[cot( 2 ) F3(0-0)

+ tan( Zn ) p3( °-20)1

+ (0)[cot( 2n ) F3(* -°

+ tan( 7 n ) F3 (" 0+25)} (3.87)

2n 
(387

where

F3(x) e ikrro/Rl a-(x) T
+ - /a(S r

~~~~~~~~~~~~~~. . . . . . ....... .-.. ,.-....°-."--......... ...... .... , ,.:.---.
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and

a±x 2 cos2(2nwN 2 x (3.*89)



CHAPTER IV

NUMERICAL RESULTS

The solution for the acoustic diffraction from impedance covered

wedges is a function of several physical and geometric parameters; the

surface impedances 0 and 8-, the source angle o, the non-dimensional

wave numbers kr and kro and the wedge angle 8. In this chapter,

diffracted and backscattered pressures are plotted for different values

of these parameters. In order to assess the influence of one of the

parameters, the others are kept constant. Most of the graphs shown in

this section are polar plots of the angular distribution of the

diffracted pressure in decibels relative to the amplitude of the

incident pressure.

The mid-range solution of diffraction of a plane wave in Eq.

(3.23) diminishes at a rate proportional to /-kr because of the factor

A in the argument of the Fresnel integrals. To study the influences

of the wedge angle and the surface impedances on the angular variation

of the pressure, it is advantageous to remove the geometric spreading

factor (k/' ) from the expression for the diffracted pressure for plane

wave incidence. Thus, henceforth only the product of rk/r * Pd(r,;) is

plotted. By the same reasoning, the diffracted pressure for a point

source is normalized by the incident pressure at the edge due to a

point source e-ikro/kro and multiplied by vkr in oraer to facilitate

comparisons between the different plots. For all the plots for a point

source, the source and the receiver are placed in the z-O plane.

Because of limitations of the plotter the following symbols are used

for labeling:

%................................................
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kr - KR e+ = AT o = SA

kro - KRO 8B- - AB 0 WA

4.1 Dependence on Surface Impedances

In the derivation of the solution, the Brewster angles 6+ and 6-

were used instead of complex impedance Z±. Rewriting the relation

between Z± and 6± as

sinO 
PC

various impedance conditions ranging from pressure release to rigid are

considered. The list of impedances and their corresponding Brewster

angles are listed below

Z (Impedance) e (Brewster Angle)

Rigid 00

2.00 pc 300

1.16 pc 600

Matched Pc 900

Pressure Release 0 90 0-i5

The influence of the impedance of the insonified (source-facing)

and uninsonified surfaces are considered in the first five plots.

These figures are plotted by employing Eq. (3.23) for the following

parameters:

1. Fig. 4.1 presents results for the diffractea pressure for the

impedances 5" - 30, 60° and 90* on the insonified surface,
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KR- 20 BAm 0 SA- 60 WA- 135

Fig. 4.1 Diffraction of plane wave with imipedance cover
on the insonified surface -with kr = 20, 0',

Oa600 and a135*.
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while 6 - 0* (rigid) remains the same on the uninsonified

surface with kr - 20, 0o - 60° and a - 135.

2. Fig. 4.2 presents plots of the diffracted pressure for the

source angle 00 - -60° to show the influence of the impedances

of the uninsonified surface. All other parameters are the

same as in Fig. 4.1.

3. The influence of an imaginary component of impedance is

considered in Figs. 4.3 and 4.4 where G+ = 90° -15 and 0-

0. The angle of incidence is 0o = 1050 in Fig. 4.3, while

40 = -105* in Fig. 4.4 and kr - 20 in both figures.

4. The diffraction by a wedge covered by absorbent surfaces with

0+  60° and 6 - 30* are shown in Fig. 4.5. The values for

kr is 20, 0o is 105" and $ is 135%

4.2 Dependence on the Wedge Angle

To facilitate comparisons of diffraction from different wedge

geometries, plots for four wedge angles are made by using Eq. (3.23).

Since the diffracted field is mainly controlled by the shadow

boundaries and nulls, for each wedge angle two different source angles

are used to demonstrate their influence. In Figs. 4.6 through 4.9 the

angle of incidence is o - 1100, whereas in Figs. 4.1U through 4.13,

Oo - 30. The values of other parameters are kr = 20, 6+ = 30° and 0-

00.
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KR= 20 BAB= 0 SA= -60 W/A= 135

14

Fig. 4.2 Diffraction of plane wave with impedance cover
on the uninsonified surface with kr 20, e-= 00,

toM-60* and 3 1330.
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KR- 20 BAT= 90 -51 BAB- 0 SAm 105 WA- 135

5 0 0 10

Fig. 4.3 Diffraction of plane wave with total absorption
on the insonified surface with kr 20, 90-5,
- 0 105 and = 3*

~% * .* % . *.. . .. . . . . . . . . - . . •.- ........-
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KR= 20 SAT- 90 -5i1~- A 3

Fig. 4.4 Diffraction of plane wave with total absorption
on the uninsonified surface ,with kr =20, 0 + 90--15,
e- 00o, = -105" and 13530
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I
4

p..

\KR- 20 BAT= 60 BAB-- 30 SA-- 105 WA= 135

,50 -3010 10

Fig. 4.5 Diffraction of plane wave with impedance cover on

both surfaces with kr = 20. + 600 ,  = 300,
10 = 105* and £ 1350

. - + + . . . . .*. . - . , ° . % . . , .. •. .• .•. +

,+ .,++ " +,,,+++* °- q ;,",+ .'+ '' " - * " ".". . . . . .... *- .
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KR=z 208T= 30 BAB= 0 SA= 110 WA= 120

• ,4

'e

50-30 -10 10

.

A

Fig. 4.6 Diffraction of plane wave from a 1200 wedge with

o= 110' + 8 300, 0* and kr - 20.

: ,-... . . ..v.;.- •. . .. . . .• , -, - " . - ...C.., -, -,,, . ,". ,-, %
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KR= 20 BAT= 30 BAB= 0 SA= 1 10 WA= 135

50-0Io1

Fig. 4.7 Diffraction f plane wave frim a 1.35' wedge with
.; 110, e =300, e a .nd kr - 20.
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I KR= 20 BAT= 30 BAB= 0 SA= 110 WA= 165
-

;0 10

Fig. 4.8 Diffraction f plane wave from a 1650 wedge with

o 110 , -30, 5 00 and kr ; 20.

.................................. . .. . -. ,o . - °Q
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KR- 20 BAT= 30 BAB= 0 SA= 110 WA= 180

-5 -0 101

Fi.49 Dfrcin fpaewv rm 84wdewt

iia10, 0, 0 ndk 0
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KR= 20 30 BAB= 0 SA= 30 WA= 120

50 -30100

Fig. '0.10 Diffraction of plane wave from a 120* wedge with
. u300, 5+3W, 9-: and kr 20.

, I,+

k 1%+



77

KR= 20 BAT= 30 BAB= 0 SA= 30 WA= 135

.44

50 -30 -10 10

Fig. 4.1.1 Diffraction +of plane wave from a 1350 wedge with
=30a, 5 30 , 3=0* and-L 1350.
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KR= 20 BAT= 30 BAB= 0 SA= 30 WA= 165

'-50 -30 -10 10

Fig. 4.12 Diffraction~of plane wave from a 165* wedge with
00 30% , 6 30*, e- - 0* and kr =20.

1'*
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KR-- 20 BAT= 30 BAB= 0 SAm 30 WA= 180

-50 -0-10 10

Fig. 4.13 Diffraction+of plane wave from a 3.800 wedge with
WO 300, a 300, 9 - 00 and kr 20.
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I-i
4.3 Dependence on kr0

When the incident pressure field is due to a point source, another

parameter kro is introduced which is the direct distance from the tip

of the wedge to the location of the source. As the source is moved

away from the wedge, the incoming spherical waves impinging on the

wedge look like plane waves. To demonstrate the influence of kro on

the diffracted field, five plots are made using Eq. (3.87) with

impedances 0+ - 600, 0- - 300, kr - 20, 0o = 600 and 8 = 135%. The

non-dimensional parameter kro takes the values 5,10, 20, 200, 2000 in

Figs. 4.14 through 4.18.

.p 4.4 Excess Attenuation

It is practical to model the diffracted field from a point source

as that due to a plane wave with a correction factor for spherical

spreading. This model assumes that there is a geometric-optic

relationship between spherical and plane waves. Fig. 4.19 is plotted

to explore this relationship. The veritcal axis of Fig. 4.19 is in

terms of excess attenuation, defined as

Excess Attenuation - -20 loglO I dB, (4.1)

where Pd is the diffracted field from Eq. (3.87) azd Pdir is the direct

field (eikr2/kr2 ) at the receiver in the absence of a wedge. The

horizontal axis is the logl0 of non-dimensional distance kr from the

tip of the wedgt to a receiver located at ; = -90 trom the x-axis.

-o r , % 9 

-..
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. ,KR= 20 BAT- 60 BAB= 30 SA= 60 WA= 135

''S

50. - 10 10

//
//

/

//

Fig. 4.14 D~ffraction of point source radiation with kr = 5

--n60% , 9- 30, 0 60* and 2 = 135.

II *1 .. ' . . .. "" ° . ."' " , "" '" " - " "" ". . . .".--
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KR= 20 BAT= 60 BAB= 30 SA= 60 WA= 135

1350
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h ,,KR= 20 BAT= 60 BAB= 30 SA= 60 WA= 135

a 1.

I'

JI't

/

14 Fig. 4.16 Diffraction+of point source radiation with

kr =20, = 600, 9- = 30e ,  ' = 60° and
o_ 135g.

j. . a..... -...-. ,. ' .... ..... ,-,.. 4 . -if *" , "
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"'\KR= 20 BAT= 60 BAB= 30 SA= 60 WA= 135

9\

4\
50-0-10 10

*

Fig. 4.17 Diffraction .f point source radiation with
kr = 200, =600, 3 =30, :o = 60 and
a 2 135 o .



L,~ 26b HiCUTiL [DIFFRACTION BY HN IMPEDANCE-LUVERED EDGE(U) 212
PENNSYLVANIA STATE UNIV UNIVERSITY PARK APPLIED
RESEARCH LAB M MARSAN 15 JUN 83 ARL/PSU/TM-83-95

UCASIFIED N@eB24-79-C-6043 F/6 26/i NENCLS s oE 4 o mho m iE

I .. lLl.lffff



11111.0 JI-0 -
11=IM W fL2'L

MICROCOPY RESOLUTION TEST CHART
HATIM.L BUREAU OF STANDMWD-1963-A



.-777_7- ,.

85

\ ,KR= 20 BAT= 60 BAB- 30 SAm 60 WA= 1.35

5-

Ftr4\
4\

00 9-30 -and
/A

/
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p 1
KRO- 20 BAT- 60 0 SA= 80 WA= 135

1

z
0

z
10

10 100

KR

Fig. 4.19 Excess attenuation as a function of kr (Eq. 4.1).
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4.5 Backscattering from a Wedge

For many applications, it is imperative to calculate the

diffracted pressure at the source location, the so called monostatic

diffraction. The next six plots exhibit this backscattered pressure.

For this situation, the source and the observer are at the same

location, i.e., 0 - 0o in Eq. (3.23). In Figs. 4.20 through 4.23, the

backscattered pressure is calculated for wedges whose surface

impedances are 0+ - 60° and 0- - 30° with kr - 20. In the next two

plots the impedances on the two surfaces are equal 0+ - 0 - 30, while

kr - 20 in Fig. 4.24 and kr - 200 in Fig. 4.25.

4.6 Comparison with the ialiuzhinets Solution

To conclude this section, plots comparing results of laliuzhinets

and results from Chapter II are presented in Figs. 4.26 and 4.27. The

plots are for the far-field diffracted pressure of plane waves derived

from Eq. (3.23). Two wedge angles, namely, 8 - 135* and 8 - 165, are

used in the plots because, for these special wedge angles, the

complicated laliuzhinets functions reduce to a finite product form.

The resulting solution is adapted from Skudrzyk [7]. In both figures

0+ 60, 8- - 30, kr - 20 and *o - 60%
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KR= 20 T 60 BAB- 30 SA- 110 WA= 120

Fig. 4.20 Backsc~ttering of plane wave from a 120* wedge
with 5 - 600, 9- - 30*, kr -20 and :0 W 1100.
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S

R- 20 SAT= 60 BAB= 30 SA= 110 WA= 135

50-0 -10 10
14

Fig. 4.21 Backscattering of plane wave from a 1350 wedge

with i + - 60°% 5- - 30°, kr =20 and :0 11l00.
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KR- 20 BAT- 60 BAB- 30 SA- 110 WA- 165

-5Io-01

Fig. 4.22 Backsc~ttering of plane wave from a 165* wedge
with a 600, 9 -300, kr - 20 and :0- 1100.
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KR- 20 BAT- 60 BAB- 30 SA= 110 WA= 180

-30 -10 10

Fig. 4.23 Backsc~ttering of plane wave from a 1300 wedge
with 8 m 60, 6- - 300, kr * 20 and : 0 1100.0
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KR- 20 BAT- 30 A 30 SA= 110 WA= 135

$

50 -3 - 10 10

*6

Fig. 4.24 Backsc:ttering of plane wave from a 135 ° wedge
with e 30*, - = 30, kr =20 and z = 1100.0
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KR- 200 SAT= 30 DAB- 30 SA- 110 WA= 135

- 14

Fig. 4.25 Backsc~rtering of plane wave from a 1350 wedge
with e s 300, e- 30 , kr = 200 and V o 1100.
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?M- 20 MTJ-6 WBaB-30 Mw- 60 WA= I35

50 30-i 1

This study
0 0 0 Maliuzhinets'

Fig. 4.26 Comparison of~ far-field diffracted pressure predicted
by t' is study with Maliuzhinets'.
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KR= 20 SAT, 60 BAB= 30 - 60 WA- 165

ii
-50 -30 - 10 10

This study
00 0 Maliuzhinets'

Fig. 4.27 Comparison of far-field diffracted pressure predicted
by this study with Maliuzhinets'.
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CHAPTER V

DISCUSSION OF NUMERICAL RESULTS AND CONCLUSIONS

5.1 Introduction

The primary objective of this study is to develop a solution forI diffraction of acoustic waves by a locally reacting impedance covered

wedge. This objective is achieved by constructing a spectrum function

from the physical interpretation of the singularities. The resultingI solution from this analysis is a closed form solution, which is a

significant improvement on the Mliuzhinets solution.

In this chapter discussions of the physical interpretation of the

diffraction problem solved in Chapter II and the numerical results that

were compiled in Chapter IV, using the mid-range solutions from Chapter

III, are presented.

5.2 Physical Interpretation of P(cosa)

The spectrum function P(cosa) (see Eq. (2.45)) consists of two

parts; the two angle factors Ml(c) and M2(0) multiplied by two

diffraction factors pl(a) and 92(u), respectively. The geometrical

shadow boundaries are represented in P(cosc&) and are contained in I1j(a)

and 1-2(Q). Although they are different from the Sommerfeld angle

factors, they possess identical poles. Four of these poles represent

the following geometrical boundaries:

a. 2 - o- n represents the angle of specular rerlection from

the upper surface (+').

b. +0 -it represents the angle of the incident shadow

boundary.

- -. ~- . . . .. . ... . . .. . ...... ..... ... .... .: . -".....
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c. -28-€ + w represents the angle of specular reflection

from the lower surface (-).

d. +4o + m represents the angle of the incident shadow

boundary.

The functions VI(m) and 12(a) are relatively insensitive to the

argument a except when a is close to the zeros and poles of P(cosa).

For example, when a approaches 28 - #o - n, representing the

reflection angle from the upper surface, *1(a) approaches the

reflection coefficient Cr (see Eq. 2.62). Although 1(a) and 2(a) do

not have any poles in the region Re lI < 8, they have two zeros each

when the exit angle is equal to one of two Brewster angles of an

impedance covered surface. The nulls az of the functions can be given

in terms of the grazing Brewster angles 8+ , and 6- as follows:

For 9 1(a)

az - - + (5.1)

and

az =  - + 8+ (5.2)

and for V2(Q)

az = -8 + 0- (5.3)

and

az= -8 + ff - - (5.4)

The function P(cosa) has another property; the term .1(q) ,,(a)

interchanges with 12 (a) ,2(a) when the signs of a, representing the

observer angle ;, and ;, are interchanged as well as j by i-. This is

expected, since the chosen coordinate system is symmetric about the

axis x-O.

,, ' a """" " "" "l~d ]iIn
" a : ' | "= a '

" "" "" "" 
°'

a "' ",,"'ud [nl I~lI l~' " "'
% ' '

'"'''""" 
" °h ' '' "

"'' ,.lh'> * *. ". "";'- -' --



The conditions of evenness, Eqs. (2.40) and (2.42) can be written

in difference equation form as:

P(BS-a-r)[sin0+-sinmJ = P(B+a-)[sin0 +sinaj (5.5)

P(-O+a+)jsin8--sinaj = P(-O-a+w)[sinO-+sina ] (5.6)

or

[ sinO+-sin(8-a) I
P(a) - P(20-a) [sinO+sin(O-a)1 (5.7)

[sinO"-sin(8+a)J

P(a) - P(-20-a) [sine-+sin(S+a) j (5.8)

It is apparent from Eqs. (5.7) and (5.8) that only wedges with

rigid-rigid or soft-soft boundary conditions have spectrum functions

P(cosa) with periodicity 40.

5.3 Discussion of Numerical Results

5.3.1 Transition Regions

The mid-range solutions (Eqs. (3.23), (3.56) and (3.87)) for

diffraction of an acoustic plane wave consist of two terms; each term

having two F+(x) terms defined by Eqs. (3.24), (3.57) and (3.88). At

the incident and reflection shadow boundaries, the far-field solution

(Eq. 2.58) becomes unbounded. This discontinuity in the geometric-

optics field is compensated separately by one of the four F±(x) terms

in the mid-range solution.

The F+(x) functions contain an argument

a(x) = 2cos'(
2nN--x

'U . .. . . . . . . . . . . . . . . . . . . . . . . . . -... "f... .. , .o':, . .. . "

U 'P f . .* ."" ; "" """ - "r : . -' ' " ". .
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which is a measure of the angular separation between the field point

and the incident or the reflection shadow boundaries which are listed

in section 5.2. At one such boundary, one of the cotangent or tangent

functions in the mid-range solution becomes singular. The integers N+

and N-, which are defined by Eqs. (3.26a) and (3.26b), assure that the

argument of a±(x) becomes zero at that boundary. Since the a±(x)

function appears as a multiplier in F±(x), the corresponding term of

the solution vanishes but the other three remaining terms are bounded.

Because the F±(x) functions cause the solution to become smooth across

these boundaries, they are called transition functions.

For example consider Fig. 4.1 with kr = 20, 0+ - 60°, 6- 0% *o

- 60* and a - 35%• The complex values of pressure on either side of

the reflection shadow boundary at 28 - o- w 30° are:

Pd - 0.0092 - i0.0295, * = 300- ,

- -0.0128 + 10.0202, * = 300+.
,J

Using Eqs. (2.61) and (2.63) the reflected pressures at either

side of the reflection shadow boundary are:

Pr - -0.0111 + 10.0249, 0 - 300 - ,

a 0.0111 - iO.0249, 0 - 300+

Addition of reflected and diffracted fields produce a continuous

field as follows:

pt - -0.0019 - io.0046 + pi, 0 - 3Qo-,

- -0.0017 - i0.0047 + pi, ¢ - 300+.

If similar calculations are maae for the incident shadow boundary

at -W + go -1200 the following continuous pressure field results

across that boundary:
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Pt - 0.1816 - 10.5725, * - -1200 - ,

- 0.1874 - 10.5735, 0 - -120 °+.

5.3.2 Influence of Impedance Coverage

In Figs. 4.1 and 4.2 the source is placed above and below the

wedge, respectively. When the impedance covered surface is insonified

the magnitude of the impedance cover dramatically influences the

diffraction field. As the impedance of the insonified surface is

increased thereby increasing the absorption, the diffracted pressure in

the illuminated zone decreases. However, the impedance cover of the

surface in the shadow zone has very little effect on the diffracted

pressure in the entire field.

If the upper surface of the wedge has a pressure release cover and

the bottom surface is rigid, and the angle of incidence is on the

pressure release side and close to the grazing angle, Fig. 4.3, the

diffracted pressure in the insonified zone is negligible because the

diffracted energy is primarily absorbed by the pressure release

surface. The opposite is true when the rigid surface is insonified

(Fig. 4.4), the diffracted pressure is significant over the entire

space. Fig. 4.5 demonstrates how the impedance cover on both surfaces

influences the diffracted pressure. Since the upper surface is more

absorbent than the lower surface, the diffracted pressure is higher in

the lower region.

5.3.3 Influence of the Wedge Angle

The diffracted field is controlled by the position of the observer

with respect to the incident and reflected shadow boundaries and the

• . o • .. .. . °• • .. , % % . h---.' -
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nulls. Their effects are demonstrated in Figs. 4.6 through 4.13 by

changing the wedge angle for different source locations. For any one

geometric configuration, there can be only two geometric-optics

- boundaries; one incident and one reflected shadow boundary or two

reflected shadow boundaries. Figs. 4.10 and 4.11 are examples of two

reflection shadow boundaries. The relative position of the zeros of

*1(a) and *2(u) with respect to the angle of incidence causes sharp

minima shown in these figures.

5.3.4 Influence of the Sphericity of the Point Source Field

The diffraction solution for a point source is given by Eq.

(3.87). The parameter R1 which appears in the solution is the shortest

path the wave travels from the source to the edge of the wedge and from

there to the receiver. It can be seen that the reciprocity theorem is

satisfied in this solution. If the values for kr and kro and and 0o

are interchanged in Eq. (3.87), which is essentially interchanging the

-i positions of the source and the receiver, there is no change in the

solution. Figs. 4.14 through 4.18 illustrates that, as the source is

placed farther away from the wedge, the normalized diffracted pressure

field approaches to a plane wave incidence except near the shadow

boundaries.

The next plot (Fig. 4.19) shows the excess attenuation (see Eq.

4.1) versus non-dimensional distance from the wedge. *The curve almost

becomes a straight line for observer distance kr over 50, i.e., the

diffracted pressure approaches its asymptotic approximation of //r.

This means that the asymptotic solution can be used for observers

located at least 8 wavelengths away.

. . .. . . . . , . . . . . ... ,, .. .: -
, , . .:-,.. ,. ..- i-.. -. . .. :" , , .," ,: ,: , , .4, _ .. . i. L-
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5.3.5 Backscattered Field

The plots of the backscattered pressure field show clearly defined

maxima. The maxima are located where the reflection coefficient Cr

reaches its maximum such that

Cr - I+sinO+ , i.e., at n = - i/2

and
l1-s mn -

Cr -l+sin9- i.e., at -= - w +r/2.

Also at these locations the angle factors MI(a) and 112(a) become

infinite, so the impedance cover only controls the magnitude of the

maxima, but not the location.

In the backscattering from a rigid-rigid wedge there is no return

if the source is located at 0 - 0, whereas Figs. 4.20 through 4.25

illustrate that the nulls are dependent on the impedance cover.

5.4 Conclusions

In the discussion of the closed form solution and the numerical

results for the diffracted pressure from impedance covered wedges, many

significant factors affecting the diffraction are pointed out.

It is evident from the plots that the impedance of the surface

lying in the shadow zone has little effect on the diffracted pressure

while the impedance cover on the insonifiea surface has a significant

effect on the diffracted pressure in the entire space. The impedance

coverage of the insonified surface has similarly a dominant influence

on the behavior of the backscattered pressure.

. . o.

.I-" .. " . . , -' . ',''' .. ,, ' , ' " "" " _ - .'.
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The location of the maxima and the minima of the diffracted field

may be adjusted by changing the impedance of the insonified surface and

the wedge angle. It was also shown that the plane wave asymptotic

solution for an observer in the far-field with the correction factor

for a point source is a good approximation for kr > 50 except near the

shadow boundaries.

In the derivation of the mid-range solutions, only the first term

of the Taylor series expansion is included in the solution. It has

been previosly established by the author that in the integration for

the asymptotic series, the odd terms vanish and the high order even

terms have very little contributions except for receivers located very

close to the absorbent wedge surfaces. The first term in the series

was found to provide sufficient accuracy.

5.5 Suggestions for Further Research

In the mid-range solutions, although the first term in the

asymptotic series provides sufficient accuracy, an investigation of

higher terms near the wedge surfaces can be studied. The higher order

terms in the Taylor expansion contributes the surface waves.

The problem of diffraction of acoustic waves from a wedge with

locally reacting boundary conditions can be expended to diffraction

from elastic wedges made of plates or solid bodies.

Furthermore, the solutions obtained in this study nay be adapted

for problems of diffraction of sound over a wedge located on a rigid

plane.

I o -
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APPENDIX A

CONDITION OF ZERO VALUE OF THE LOOP INTEGRAL

A loop integral is zero (7],

f S(z) e-ikrcos(z)dz 0,U 1+U 2

if the function S(z) is even, i.e., if S(z) = S(-z)

where

z = u + iv

Proof:

The path of integration is deformed into lines arbitrarily

close to u w - T and u = + 7 . Since cos(z) = cos(-z) and S(z) =

S(-z) the integrands along the line 0 > v > _ , u = - and

0 < v < , - 7 are equal. But since the directions of the two

paths are opposite their total contribution is zero.
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